Numerical Study of an Initial-Boundary Value Neumann Problem for a Singularly Perturbed Parabolic Equation
نویسندگان
چکیده
منابع مشابه
A Boundary Value Problem for a Singularly Perturbed Differential Equation
has a solution «=g(x) for O^x^Xo with g(0)=a and u = h(x) tor xo^x^l with h(l)=b where g(x0)=h(x0). It will be assumed that g'(xo)*h'(xo). The case of (1) with f=l — (y')t and where \a — b\ <1 can be treated explicitly. For small e>0 the solution of (1) tends to the broken line solution of (2) with g(x)=a — x and h = b — 1+x and Xo = (l+a—b)/2. (There is another broken line solution of (2) with...
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملVarious Numerical Methods for Singularly Perturbed Boundary Value Problems
As Science & technology develop, many practical problems, such as the mathematical boundary layer theory or approximation of solution of various problems described by differential equations involving large or small parameters have become increasingly complex and therefore require the use of asymptotic methods. However, the theory of asymptotic analysis for differential operators has mainly been...
متن کاملA Numerical Method for a Singularly Perturbed Three-Point Boundary Value Problem
The purpose of this paper is to present a uniform finite difference method for numerical solution of nonlinear singularly perturbed convection-diffusion problem with nonlocal and third type boundary conditions. The numerical method is constructed on piecewise uniform Shishkin type mesh. The method is shown to be convergent, uniformly in the diffusion parameter ε, of first order in the discrete ...
متن کاملNumerical Solving of Singularly Perturbed Boundary Value Problems with Discontinuities
One-dimensional convection-diffusion problem with interior layers caused by the discontinuity of data is considered. Though standard Galerkin finite element method (FEM) generates oscillations in the numerical solutions, we prove its convergence in the ε-weighted norm of the first order on a class of layer-adapted meshes. We use streamline-diffusion finite element method (SDFEM) in order to sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Modeling and Analysis of Information Systems
سال: 2016
ISSN: 2313-5417,1818-1015
DOI: 10.18255/1818-1015-2016-5-568-576